【官方首頁】金沙澳门官网手机版|金沙澳门官网网址|金沙官网登入手机版✌_✌欢迎您!


我要投稿 设为首页 - 加入收藏
当前位置: 主页 > 互联网 >

简析AI:深度学习让AI正在变得像人类一样神秘


2017-10-17 17:14 [互联网] 来源于:36kr
导读:每一个人都宣称自己对AI感兴趣。不要被有关AI的炒作所迷惑,它是泡沫还是真实?和旧有的AI潮流相比,它现在有什么新颖之处?
织梦二维码生成器

从20世纪60年代开始,人们就在期待像哈尔(HAL)这样的科幻级别的AI,然而直到最近,PC和机器人还是非常愚笨。现在,科技巨头和创业公司宣告了AI革命的到来:无人驾驶汽车、机器人医生、机器投资者等等。普华永道认为,到2030年,AI将会向世界经济贡献15.7万亿美元。“AI”是2017年的热词,就像“.com”是1999年的时髦用语那样,每一个人都宣称自己对AI感兴趣。不要被有关AI的炒作所迷惑,它是泡沫还是真实?和旧有的AI潮流相比,它现在有什么新颖之处?

AI并不会轻易或迅速地被应用。最令人兴奋的AI实例往往来自大学或者科技巨头。任何许诺用最新的AI技术让公司发生革命性变革的自封的AI专家,都只是在传递错误的AI信息,其中某些人只是重塑旧有技术的形象,把它们包装成AI。每个人都已经通过使用Google、微软、亚马逊的服务,来体验了最新的AI技术。但是,“深度学习”不会迅速地被大企业所掌握,用来定制内部项目。大多数人都缺乏足够的相关数字数据,不足以可靠地用来训练AI。结果就是,AI并不会杀死所有的工作机会,尤其因为它在训练和测试每个AI的时候还是需要人类。

AI目前已经能够“用眼睛看到”,并精通一些视觉相关的工作了,比如:通过医学影像识别癌症或其他疾病,在统计学上优于人类放射科医师、眼科医师、皮肤科医师等,还有驾驶汽车、读唇语。AI能通过学习样本(比如毕加索或者你的画作)画出任何一种风格的图画。反过来,它也能通过一幅画,补足缺失的信息,猜出真实的照片是什么。AI看着网页或应用的屏幕截图,就能写出代码制作出类似的网页或应用。

简析AI:深度学习让AI正在变得像人类一样神秘

AI目前还能“用耳朵听到”,它不只能听懂你的话,还能通过听Beatles或你的音乐,创作出新的音乐,或者模拟它听到的任何人的声音。一般人无法分辨出一幅画或一首曲子是由人还是由机器创作的,也无法分辨出一段话是由人类还是AI说出的。

被训练用来赢得扑克比赛的AI学会了虚张声势,能够处理丢牌、潜在的造假行为,还能误导信息。被训练用来谈判的机器人也学会了欺骗,能猜测出你什么时候在说谎,如果需要它们也会撒谎。一个用来在日语和英语间翻译或者在韩语和英语间翻译的AI,也能在韩语和日语间进行翻译转换。看起来翻译AI自己创造了一种中间语言,能不分语言的界限演绎任何一个句子。

机器学习(ML)是AI的一个子类别,它能让机器从经验中学习,从真实世界的实例中学习,数据量越大,它就能学到越多。据说,如果一台机器完成一项任务的表现随着经验的增多越来越好,那它就能根据这项任务的经验进行学习。但大部分AI还是根据固定规则制造出来的,它们并不能学习。从现在开始,我将使用“机器学习”这个词来指称“从数据中进行学习的AI”,以此强调它和其他AI的区别。

人工神经网络只是通往机器学习的其中一种方式,其他路径还包括决策树、支持向量机等。深度学习是一种具有许多抽象层次的人工神经网络。不去谈“深度”这个有炒作意味的词,很多机器学习方法都是“浅显的”。成功的机器学习通常是混合的,也就是很多方法的组合,比如树+深度学习+其他,它们都是被分别训练而成的,再把它们结合在一起。每一个方法都可能带来不同的错误,所以,平均了它们每一个方法成功的结果,它们就胜过了单独一种方法。

旧有的AI并不能“学习”。它是基于规则的,它只是几个人类写成的“如果……那么……”。它只要能解决问题就被称作是AI,但它不是机器学习,因为它不能从数据中进行学习。目前的AI和自动系统中大部分依然是基于规则的代码。机器学习从20世纪60年代开始才被人了解,但就像人类大脑一样,它需要大量的计算设备处理大量的数据。在20世纪80年代,要在PC上训练一个ML需要几个月时间,而那时候的数字数据也非常稀少。手动输入的基于规则的代码能快速地解决大部分问题,所以机器学习就被遗忘了。但用我们现在的硬件,你能在几分钟内就训练出一个ML,我们知道最佳的参数,而且数字数据也更多了。然后在2010年之后,一个又一个AI领域开始被机器学习所掌控,从视觉、语音、语言翻译到玩游戏,机器学习胜过了基于规则的AI,而且通常也能胜过人类。

为什么AI在1997年的国际象棋比赛中就击败了人类,但直到2016年,才在围棋比赛中击败了人类呢?因为在1997年,计算机仅仅简单地计算出了国际象棋8x8棋盘中所有的可能性,但围棋拥有19x19的可能性,计算机要计算出所有可能性需要十亿年。这就像要随机组合出所有字母,以此得到这样一整篇文章一样:这根本不可能。所以,人们已知的唯一的希望在于训练出一个ML,但是ML是近似的,不是确定的,机器学习是“随机的”,它可以被用于统计分析的模式,但不能用于准确的预测。

(编辑:金沙澳门官网手机版网


免责声明:本文仅代表来源网站或作者个人观点,与金沙澳门官网手机版网无关。其原创性以及内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。如有侵权联系后立即处理,在线联系QQ:94083,邮箱:admin@kochclassics.com
网友评论
推荐文章